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Abstract

In this study, a thin-walled beam made of functionally graded material (FGM) which is used as rotating blades in

turbomachinery under aerothermoelastic loading is investigated. The governing equations, which are based on first-

order shear deformation theory, include the effects of the presetting angle, the secondary warping, temperature gradient

through the wall thickness of the beam and also the rotational speed. Moreover, quasi-steady aerodynamic pressure

loadings are determined using first-order piston theory, and steady beam surface temperature is obtained from gas

dynamics theory. Then, the blade partial differential equations are transformed into a set of ordinary differential

equations using the extended Galerkin method. Finally, having solved the resulting structural–fluid–thermal eigenvalue

system of equations, the effects of Mach number and geometric parameters on natural frequencies are presented. The

results demonstrate that the natural frequencies decrease under aerothermoelastic loading at high Mach numbers.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Rotating blades in turbomachinery operate at high speed and temperature. Due to aerothermoelastic interactions

especially at high Mach number, rotating blades are subjected to high aerothermal loads which can cause instability

behavior during operation, as pointed out by Oh et al. (2003a, b). Librescu (1975) showed that static and dynamic

instabilities are induced by high speed airflow and greatly affected by the thermal environment. Functionally graded

materials (FGMs) for high-temperature structural applications are special microscopically inhomogeneous composites,

whose thermo-mechanical properties vary smoothly and continuously in predetermined directions throughout the body

of the structure. This feature is achieved by gradually varying the volume fraction of constituent materials, which

usually are ceramics and metals (Aboudi et al., 1966). The limitations of such a homogenization-based approach in the

analysis of FGMs have been discussed by Pindera et al. (1995). In addition to the research works for the modeling of

three-dimensional (3-D) FGM media (such as Aboudi et al., 1999; Librescu et al., 2005; Oh et al., 2003a, b), the studies

involving thin-walled structures made of FGMs have also been devoted to beams, plates, and shells (Sanker, 2002).

Librescu et al. (2005) studied the rotating FGM thin-walled beams operating in a high-temperature environment,

without the gas flow pressure loading. To the best of the authors’ knowledge, in spite of its evident practical importance,
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a blade width

aij stiffness quantities

ax, ay, az acceleration components of arbitrary point

on beam cross-section

[A] state matrix

b blade height

bk mass quantities

Cbg, Sbg direction cosines between principal and blade

coordinate directions

CN sound speed

E Young’s modulus

[G] aerodynamic damping matrix

h wall thickness

k volume fraction parameter

[K] stiffness matrix

L blade length

mx, my distributed moment

Mx, My the moments about the x- and y-axis

MT
x ;M

T
y thermal moment about x- and y-axis

[M] mass matrix

MN Mach number

N number of mode

px, py distributed force in x- and y-direction

pnx, pny x and y of non-aerodynamic loading
fqug; fqvg;

fqxg; fqyg;
generalized coordinates

{Q} forcing vector

Qx, Qy the shear forces in the x- and y-directions

{R} position vector of an arbitrary point of the

blade

Rf steady temperature recovery factor

R0 hub radius

s, n local surface coordinates (tangential, normal

to mid-surface)

TN air flow temperature

Tz the axial force in the z-direction

u, v, w displacement components in the x-, y- and z-

direction

u0, v0 displacement components in the x- and y-

direction

{U}, {V}N-dimensional vectors of trial functions of

displacement

U0, V0 amplitude of displacement components in the

x- and y-direction

Ut
xp ;Ut

yp the tangential components of fluid velocity on

the positive xp and yp planes

UN air flow velocity

vx, vy, vz velocity components of arbitrary point on

beam cross-section

Vm, Vc volume fraction of metal and ceramic

x, y, z blade coordinate variables

xp, yp, zp principal coordinate variables

{X} constant vector

{Z} state vector

a thermal expansion coefficient

b, b0 pretwist angle of an arbitrary cross-section

and tip cross-section, respectively

dT, dV, dWe variation of kinetic and potential energy

and virtual work of external force, respec-

tively

Dpxp ; Dpyp the x- and y-aerodynamic loading on the

positive xp and yp planes

DT the steady-state temperature rise

exx, eyy in-plane strain

g setting angle

gxy in-plane shear strain

gyz, gxz transverse shear strain

yx, yy rotation about x- and y-axis, respectively

{Yx}, {Yy} N-dimensional trial vectors of rotation

about x- and y-axis, respectively

k thermal conductivity

ka air polytropic ratio

l aerothermoelastic eigenvalue

n Poisson’s ratio

r material mass density

rN air flow density

u the lateral velocity of gas particles near the

panel surface

sij the stress tensor components

oi natural frequency

ōi nondimensional natural frequency

ðoiL
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b1=a33

p
Þ

O rotating speed

Ō nondimensional angular velocity of the shaft

ðOL2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b1=a33

p
Þ

ð:_Þ; ð:Þ0 d=dt
� �

ð:Þ; d=dz
� �

ð:Þ
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no research work related to the modeling and aerothermoelastic behavior of supersonic rotating FGM thin-walled

beams working under a gas flow pressure as well as in a high-temperature environment has been done yet. Hence, the

research work in this paper is devoted to this topic.

A thin-walled beam made of FGM is considered, which is used as a rotating turbomachinery blade under

aerothermoelastic loading. The governing equations, based on a small-deflection beam model are considered, including

the presetting angle. It is assumed that the original cross-section of the blade is preserved and transverse shear and

rotary inertias are included in the structural model. Also the effect of rotational velocity has been taken into account.

Quasi-steady aerodynamic pressure loadings are determined using first-order piston theory as well as steady beam

surface temperature through gas dynamic theory (Pourtakdoust and Fazelzadeh, 2005). In this investigation the blade is
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exposed to viscous compressible flow at a constant speed for a sufficient period of time. From the principle of

conservation of energy, it can be concluded that the flow temperature is proportional to the square of Mach

number. Finally, the blade partial differential equations are transformed into a set of ordinary differential equations

through the extended Galerkin approach. Herein, the damping terms are included in the discretized form of the

governing equations of motion, whereas the damping terms do not appear in the absence of gas flow pressure loading

(Librescu et al., 2005).

2. Blade geometrical description

Consider a straight and pre-twisted flexible beam of length L mounted on a rigid hub of radius R0 and spinning at

constant speed O about an axis normal to the longitudinal axis of the beam, as shown in Fig. 1. The beam is allowed to

vibrate flexurally in a plane making an angle g with respect to the plane of rotation, referred to as the setting angle. In

Fig. 1 (x, y, z) is a centroidal (right-hand Cartesian) rotating coordinate system with its origin located at the blade root.

In addition to this coordinate system, the principal coordinate system is considered along the principal axes of a beam

cross-section (Librescu et al., 2005).

The two coordinate systems are related by the following transformation relationships:

x ¼ xp cosðbðzÞ þ gÞ � yp sinðbðzÞ þ gÞ; y ¼ xp sinðbðzÞ þ gÞ þ yp cosðbðzÞ þ gÞ; z ¼ zp, (1)

where b(z) ¼ b0z/L, is the pre-twist of the given section, b0 is the pre-twist at the beam tip, and L is the beam span. It

should be remarked that (s, z, n) is another local coordinate, where s and n, �1
2
hpnp1

2
h; are mid-line circumferential

and thickness coordinates, respectively. Here h is the wall blade thickness. Components of the 3-D displacement vector

are expressed as

uðx; y; z; tÞ ¼ u0ðz; tÞ; vðx; y; z; tÞ ¼ v0ðz; tÞ,

wðx; y; z; tÞ ¼ yxðz; tÞ yðsÞ � n
dx

ds

� �
þ yyðz; tÞ xðsÞ þ n

dy

ds

� �
, ð2Þ

where u0 (z;t) and v0 (z;t) are rigid-body translations along the x- and y-axis, and yx(z;t) and yy(z;t) are rigid-body

rotations about the x- and y-axis. The position vector of a point M(x,y,z) belonging to the deformed structure is

fRðx; y; z; tÞg ¼ ðxþ uÞiþ ðyþ vÞjþ ðzþ wþ R0Þk. (3)

By deriving the position vector, one obtains the velocity and acceleration vectors of an arbitrary point M(x,y,z) of the

beam in the form

f _Rg ¼ vxiþ vyjþ vzk; f €Rg ¼ axiþ ayjþ azk; (4)

their components are

vx ¼ _uþ ðR0 þ zþ wÞO; vy ¼ _v; vz ¼ _w� ðxþ uÞO, (5)

ax ¼ €uþ 2 _wO� ðxþ uÞO2; ay ¼ €v; az ¼ €w� 2 _uO� ðR0 þ zþ wÞO2. (6)

The following strain displacement relation can be derived:

�zz ¼
qw

qz
; gxz ¼

qw

qx
þ

qu

qz

� �
; gyz ¼

qw

qy
þ
qv

qz

� �
. (7)

The relation between shear strain in (s, z, n) and (x, y, z) coordinate systems can be obtained as

�sz ¼
dx

ds
gxz þ

dy

ds
gyz; �nz ¼

dy

ds
gxz �

dx

ds
gyz. (8)

It is assumed that the original cross-section of the beam is preserved (Qin and Librescu, 2002), therefore

�xx ¼ �yy ¼ gxy ¼ 0. (9)

Consequently, also

�nn ¼ �ss ¼ �sn ¼ 0. (10)
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Fig. 1. Geometry of the rotating blades: (a) pretwisted thin-walled blade and (b) blade cross-section.
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3. Constitutive relations

Since the material used is isotropic, the corresponding thermoelastic constitutive law adapted to the case of thin-

walled structures is expressed as (Noda et al., 2003)

sss

szz

szn

sns

ssz

2
6666664

3
7777775
¼

Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66

2
6666664

3
7777775

�ss

�zz

�zn

�ns

�sz

2
6666664

3
7777775
�

âDT

âDT

0

0

0

2
6666664

3
7777775
, (11)

where

Q11

E

1� n2
; Q12 ¼

En
1� n2

; Q66 ¼
E

2ð1þ nÞ
,

Q44 ¼ Q55 ¼ k2s
E

2ð1þ nÞ
; â ¼

E

1� n
a

and E and n are Young’s modulus and Poisson’s ratio, respectively, k2s is the transverse shear correction factor, DT(s, z,

n) is the steady-state temperature rise from that of the stress-free state, and a is the thermal expansion coefficient. The

calculation of through-thickness graded properties is based on the assumption that the inclusion phase is small relative

to both the wall thickness and temperature gradient. For a model of ceramic/metal FGM the material properties vary
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continuously across the blade thickness according to the law given by Praveen and Reddy (1998),

PMðnÞ ¼ ðPMc � PMmÞVc þ PMm; Vc ¼ 1� Vm, (12)

where Vm and Vc are the volume fractions of metal and ceramic. Herein subscripts m and c identify quantities associated

with metal and ceramic, respectively. PM in Eq. (12) represents ‘‘material properties’’ corresponding to the modulus of

elasticity, Poisson’s ratio, density, thermal coefficient expansion and thermal conductivity.

For the case of an uniform blade thickness, Vm can be expressed as

Vc ¼
2nþ h

2h

� �k

, (13)

where k, 0pkpN, is the volume fraction parameter. This shows that the material properties vary continuously from

fully ceramic at the top surface of the blade to fully metal at the bottom surface. It is also assumed that the blade is

subjected to a steady-state one-dimensional (1-D) temperature distribution through its thickness. The steady-state 1-D

heat transfer equation is expressed by

d

dn
kðnÞ

dT

dn

� �
¼ 0. (14)

The boundary conditions are

T n ¼ �
h

2

� �
¼ Tm; T n ¼

h

2

� �
¼ Tc. (15)

The solution of Eq. (14) can be obtained by means of polynomial series. Therefore, T(n) is calculated as

TðnÞ ¼ Tm þ
DT

C

X1
i¼0

ð�1Þi
ðkcmÞ

i

ðik þ 1ÞðkmÞ
i

2zþ h

2h

� �ikþ1

(16)

with

C ¼
X1
j¼0

ð�1Þj
ðkcmÞ

j

ðjk þ 1ÞðkmÞ
j

and

DT ¼ Tc � Tm; kcm ¼ kc � km.

Throughout the numerical simulation Tm is taken 300K. It is assumed that the properties of the FGM are

temperature-dependent and vary according to a law obtained experimentally. These are expressed in a general form as

PðnÞ ¼ P0ðP�1=T þ 1þ P1T þ P2T2 þ P3T3Þ. (17)

Herein P0, P�1, P1, P2, P3 are constants and T (in degrees Kelvin) is the environmental temperature. For those

constituents considered in this paper, namely silicon nitride (SN) and stainless steel (SS), the constants Pi are supplied

(e.g., see, Oh et al. (2003a, b) and Reddy and Chin (1998).
4. Governing equation of rotating blades

The governing equations and boundary conditions can be derived via the extended Hamilton’s principle. This can be

formulated asZ t2

t1

ðdT � dV þ dW eÞdt ¼ 0; du0 ¼ dv0 ¼ dyx ¼ dyx ¼ 0 at t ¼ t1; t2, (18)

where T and V denote the kinetic and strain energies, respectively, dWe is the virtual work of external forces, t1 and t2
being two arbitrary instants of time, and d is the variational operator. In the above equation, the variation of kinetic

energy is given by

dT ¼

Z L

0

ðrf _Rgfd _RgÞdz, (19)
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in which

f _Rg ¼ ½ _uþ ðR0 þ zþ wÞO�iþ _vjþ ½ _w� ðxþ uÞO�k.

Also, the variation of strain energy based on first-order shear deformation theory of beams can be written as

dV ¼ �

Z L

0

fðM 0
y �QxÞdyy þ ðM

0
x �QyÞdyx þ ½Q

0
x þ ðTzu00Þ

0
� du0 þ ½Q

0
y þ ðTzv00Þ

0
� dv0gdz

þ ½Mydyy þMxdyx þ ðQx þ Tzu00Þ du0 þ ðQy þ Tzv00Þ dv0�j
L
0 , ð20Þ

where (Tz,Qx,Qy) and (Mx,My) are 1-D stress resultants and couples, respectively. dWe is the virtual work of

nonconservative external forces, which in this study becomes,

dW e ¼

Z L

0

ðpxdu0 þ pydv0Þdz. (21)

Substituting Eqs. (19)–(21) into Eq. (18), using integration by parts, and noting the fact that the variations (du0, dv0,

dyx, dyy) are independent and arbitrary, the equations of motion and the related boundary conditions can be obtained

as

du0 : ½a44ðzÞðu
0
0 þ yyÞ þ a45ðzÞðv

0
0 þ yxÞ�

0 � b1 €u0 þ b1u0O2 þ O2½RðzÞu00�
0 þ px ¼ 0, (22)

dv0 : ½a55ðzÞðv
0
0 þ yxÞ þ a54ðzÞðu

0
0 þ yyÞ�

0 � b1 €v0 þ O2½RðzÞv00�
0 þ py ¼ 0, (23)

dyy : ½a22ðzÞy
0
y þ a23ðzÞy

0
x�
0 � a44ðzÞðu

0
0 þ yyÞ � a45ðzÞðv

0
0 þ yxÞ � ðb5ðzÞ þ b15ðzÞÞð€yy � O2yyÞ

� ðb6ðzÞ � b13ðzÞÞð€yx � O2yxÞ þmy ¼ ðM
T
y Þ
0, ð24Þ

dyx : ½a33ðzÞy
0
x þ a32ðzÞy

0
y�
0 � a55ðzÞðv

0
0 þ yxÞ � a54ðzÞðu

0
0 þ yyÞ � ðb4ðzÞ þ b14ðzÞÞð€yx � O2yxÞ

� ðb6ðzÞ � b13ðzÞÞð€yy � O2yyÞ þmx ¼ ðM
T
x Þ
0, ð25Þ

where MT
x and MT

y are thermal bending moments about the x- and y-axis, respectively, and stiffness quantities aij ¼ aji

and reduced mass terms bi are defined in Oh et al. (2003a, b) and Librescu et al. (2005). Assuming the blade to be

clamped at z ¼ 0 and free at z ¼ L, the corresponding boundary conditions are:

u0 ¼ v0 ¼ yy ¼ yx ¼ 0; at z ¼ 0, (26)

and

du0 : a44ðu
0
0 þ yyÞ þ a45ðv

0
0 þ yxÞ ¼ 0; dv0 : a55ðv

0
0 þ yxÞ þ a54ðu

0
0 þ yyÞ ¼ 0, (27,28)

dyy : a22y
0
y þ a23y

0
x ¼MT

y ; dyx : a33y
0
x þ a32y

0
y ¼MT

x ; at z ¼ L. (29,30)

5. Aerothermoelastic loadings

It is assumed that the blade is exposed to supersonic gas flow. The temperature difference due to viscous flow can be

expressed as

DT ¼ Tc � T1 ¼ Rf ½ðka � 1Þ=2�M2
1T1, (31)

where Tc is blade wall temperature. First-order piston theory is used to evaluate the perturbed gas pressure. Hence, the

pressure on the principal planes of the blade becomes

DPyp ¼ C1r1
qvp

qt
þUt

yp

qvp

qz

� �
; DPxp ¼ C1r1

qup

qt
þUt

xp

qup

qz

� �
, (32)

where

Ut
xp ¼ U1 cos ðbþ gÞ; Ut

yp ¼ U1 sin ðbþ gÞ; (33)

here CN, rN, UN are the speed of sound, the free stream air density and velocity, respectively, Ut
xp and Ut

yp are the

tangential components of fluid velocity on the positive xp and yp planes, respectively. Also, up and vp are displacement
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components along the principal axes xp and yp, respectively, which are related to the displacement components in the

x–y coordinate system as

up ¼ u0 cos ðbþ gÞ þ v0 sin ðbþ gÞ; vp ¼ �u0 sin ðbþ gÞ þ v0 cos ðbþ gÞ. (34)

Using Eq. (32), the external loads per unit axial length distributed in the x- and y-directions can be obtained,

respectively, as

px ¼ aDPyp sin ðbþ gÞ � bDPxp cos ðbþ gÞ; py ¼ �aDPyp cos ðbþ gÞ � bDPxp sin ðbþ gÞ. (35)

6. Method of solution

Due to the complicated boundary conditions and elastic coupling involved in the governing equations, it is difficult to

obtain an exact solution. Therefore, in order to solve the governing equations in a general way, the extended Galerkin’s

method (EGM) (Reddy, 1986) is used. In this method we must select weighting functions that only need to satisfy

boundary conditions. The displacement field is represented as

u0ðz; tÞ ¼ fUðzÞg
TfquðtÞg; v0ðz; tÞ ¼ fV ðzÞg

TfqvðtÞg,

yxðz; tÞ ¼ fYxðzÞg
TfqxðtÞg; yyðz; tÞ ¼ fYyðzÞg

TfqyðtÞg, ð36Þ

where {U}, {V}, {Yx} and {Yy} are N-dimensional vectors of trial functions. Replacing the displacement field in the

governing equations and using EGM, the discretized form of the governing equation of motion for the rotary thin-

walled blade is obtained as

½M�f €qðtÞg þ ½G�f _qðtÞg þ ½K �fqðtÞg ¼ 0, (37)

where [M], [G] and [K] denote the symmetric mass matrix, the symmetric aerodynamic damping matrix and the non-

symmetric stiffness matrix, respectively, while

fqg ¼ fqug
Tfqvg

Tfqxg
Tfqyg

T
n oT

(38)

is the overall vector of generalized coordinates. The expressions for the [M], [G] and [K] matrices are provided in

Appendix A.

Eq. (37) can be expressed in the first-order variable form as

f _ZðtÞg ¼ ½A�fZðtÞg, (39)

where the state vector {Z(t)} is defined as

fZðtÞg ¼ ffqgTf _qgTgT, (40)

and the 4N� 4N state matrix [A] has the form

½A� ¼
½0� ½I �

�½M��1½K� �½M��1½G�

" #
, (41)

in which [I] is the unit matrix. Upon expressing {Z(t)} in Eq. (39) as

fZðtÞg ¼ fXg exp ðltÞ, (42)

a standard eigenvalue problem is obtained,

ð½A� � l½I �ÞfZg ¼ 0, (43)

where {X} is a constant vector and l is a constant-valued quantity. The aerothermoelastic eigenvalues or natural

frequencies of the structural–fluid–thermal system can be obtained from the resulted equation. In general the

eigenvalues are complex (Dowell, 1975).
7. Numerical results

The resulting system of equations is solved through numerical integration. The effects of Mach number variation and

geometric parameters on the natural frequencies are presented. The thin-walled blade considered has a uniform
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rectangular cross-section with the following geometrical characteristics:

R0 ¼ 1:3m; L ¼ 1:52m; a ¼ 0:257m; b ¼ 0:0827m; h ¼ 0:01654m.

The following dimensionless parameters have been considered in the numerical simulations

Ō
2
¼ O2 b1L4

a33
; ō2

i ¼ o2
i

b1L4

a33
,

where oi is the ith natural frequency of the non-pretwisted and non-rotating blades considered at zero Mach number.

The functionally graded material considered is composed of SN and SS with dependent temperature properties given by
3
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Fig. 2. Variation of the natural frequencies versus rotating speed for selected values of Mach number for b0 ¼ 451, g ¼ 0, and k ¼ 0.
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Oh et al. (2003a, b) and Reddy and Chin (1998).The following properties is considered for air:

k ¼ 1:4; T1 ¼ 300K; r1 ¼ 1:1614 kg=m3; C1 ¼ 340:5m=s.

Trial functions used in EGM are polynomial series satisfying boundary conditions at the root, which are

(Chandiramani et al., 2003)

fUg ¼ fVg ¼ z2z3z4z5z6z7
	 
T

; fYxg ¼ fYyg ¼ z1z2z3z4z5z6
	 
T

.
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Fig. 3. Variation of the natural frequencies versus rotating speed for selected values of Mach number for b0 ¼ 451, g ¼ 0, and k ¼ 50.
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Also, in Eq. (24) the first six terms of the series are used in the numerical simulations (Lanhe, 2004). In general, the system is

nonconservative; therefore, the stiffness matrix [K] is nonsymmetric. For some choices of the displacement components it may

become symmetric as in the case of present study, in which we used the same order polynomial spatial basis functions for the

displacement components, i.e. {U(z)} ¼ {V(z)}, in the Galerkin solution procedure. The numerical solution yields a result in

the form of l ¼ s+io, in which s is of very small magnitude in comparison witho and therefore elt
ffieiot At the critical state,

s ¼ 0, the imaginary part of o corresponds to the natural frequency or the flutter frequency of the system.

Variation of the first three natural frequencies versus the dimensionless rotating speed for full ceramic material and two

Mach numbers are shown in Fig. 2. The results are for zero Mach number compatible with that given by Librescu et al.

(2005). It is evident that increasing the Mach number tends to reduce the natural frequency. This is associated with raising the

temperature on the wall surface. In contrast to the effect of increasing of the Mach number, the beneficial effect of increasing

Ō is observed in this figure. Similar trends appear in the results for the full metal constituent (k ¼ 50), plotted in Fig. 3.
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In Fig. 4 the influence of pre-twist angle with associated Mach number is investigated. An increasing Mach number

has similar effects as discussed for previous figures. In Fig. 5 the results for a full metal blade are presented. Fig. 6 shows

the variation of natural frequencies versus the volume fraction parameter. It is evident from these plots that increasing

the Mach number and the volume fraction parameter influences strongly the natural frequencies. These results are

consistent with those presented in the previous plots.
8. Conclusion

The behavior of rotating beams made up of functionally graded materials exposed to high-temperature

supersonic gas flow is investigated. The proposed formulation enables one to accurately and efficiently describe blade
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natural frequencies when it is subjected to actual operating conditions. The effects of the volume fraction index, pre-

twist angle, rotating speed, and Mach number on the flutter or natural frequencies have been demonstrated.

A reasonable agreement is obtained for zero Mach number between the present solution and those of Librescu et al.

(2005).

A detailed parametric study of the proposed model reveals the following points:
(i)
 with an increase in volume fraction index, the natural frequencies decrease exponentially;
(ii)
 the natural frequencies increase with increasing rotating speed, and decrease with increasing Mach number;
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(iii)
 the natural frequencies are dependent on the pre-twist angle (b0) as well as the Mach number;
(iv)
 the natural frequencies decrease under aerothermoelastic loadings, especially at high Mach numbers.
Appendix A

Expressions for the elements of the mass, aerodynamic damping and stiffness matrices are as follows:

M½ � ¼

m11 0 0 0

0 m22 0 0

0 0 m33 m34

0 0 m43 m44

2
6664

3
7775, (A.1)

where

m11 ¼

Z L

0

b1fUgfUg
T dz; m22 ¼

Z L

0

b1fVgfVg
T dz;

m33 ¼

Z L

0

ðb4 þ b14ÞfYxgfYxg
T dz; m44 ¼

Z L

0

ðb5 þ b15ÞfYygfYyg
T dz;

m34 ¼

Z L

0

ðb6 � b13ÞfYxgfYyg
T dz; m43 ¼

Z L

0

ðb6 � b13ÞfYygfYxg
T dz,

G½ � ¼

g11 g12 0 0

g21 g22 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775, (A.2)

where

g11 ¼

Z L

0

ð�aS2
bg � bC2

bgÞC1r1fUgfUg
T dz; g12 ¼

Z L

0

ða� bÞC1r1CbgSbgfUgfVg
T dz,

g21 ¼

Z L

0

ða� bÞC1r1CbgSbgfVgfUg
T dz; g22 ¼

Z L

0

ð�aC2
bg � bS2

bgÞC1r1fVgfVg
T dz;

½K� ¼

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

2
6664

3
7775,

where

k11 ¼

Z L

0

ða44fUg
0fUg0

T
� b1O2fUgfUgT þ O2RfUg0fUg0

T
þ ð�aUt

yp S2
bg � bUt

xp C2
bgÞC1r1fUgfUg

TÞdz,

k12 ¼

Z L

0

ða45fUg
0fVg0

T
þ ðaUt

yp � bUt
xp ÞC1r1CbgSbgfUgfVg

0TÞdz,

k13 ¼

Z L

0

ða45fUg
0fYxg

TÞdz; k14 ¼

Z L

0

ða44fUg
0fYyg

TÞdz,

k21 ¼

Z L

0

ða45fVg
0fUg0

T
þ ðaUt

yp � bUt
xp ÞC1r1CbgSbgfVgfUg

0TÞdz,

k22 ¼

Z L

0

ða55fVg
0fVg0

T
þ O2RfVg0fVg0

T
þ ð�aUt

yp C2
bg � bUt

xp S2
bgÞC1r1fVgfVg

0TÞdz,
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k23 ¼

Z L

0

ða55fVg
0fYxg

TÞdz; k24 ¼

Z L

0

ða45fVg
0fYyg

TÞdz,

k31 ¼

Z L

0

ða45fYxgfUg
0TÞdz; k32 ¼

Z L

0

ða55fYxgfVg
0TÞdz,

k33 ¼

Z L

0

ða55fYxgfYxg
T � ðb4 þ b14ÞO2fYxgfYxg

T þ a33fYxg
0fYxg

0TÞdz,

k34 ¼

Z L

0

ða45fYxgfYyg
T � ðb6 � b13ÞO2fYxgfYyg

Tþa23fYxg
0fYyg

0T
�
dz,

k41 ¼

Z L

0

ða44fYygfUg
0TÞdz; k42 ¼

Z L

0

ða45fYygV
0TÞdz,

k43 ¼

Z L

0

ða45fYygfYxg
T � ðb6 � b13ÞO2fYygfYxg

Tþa23fYyg
0fYxg

0T
�
dz,

k44 ¼

Z L

0

ða44fYygfYyg
T � ðb5 þ b15ÞO2fYygfYyg

T þ a22fYyg
0fYyg

0TÞdz.
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